
Theoretical Studies of Diffusion Kinetics in Austenite  

 
A.V. Evteev1,a, E.V. Levchenko1,b, I.V. Belova1,c and G.E. Murch1,d

 

1Diffusion in Solids Group, Centre for Geotechnical and Materials Modelling 
School of Engineering, The University of Newcastle 

Callaghan, NSW 2308 Australia 
 

aAlexander.Evteev@newcastle.edu.au, bElena.Levchenko@newcastle.edu.au,  
cIrina.Belova@newcastle.edu.au, dGraeme.Murch@newcastle.edu.au 

 
Keywords: diffusion, austenite, computer simulation 
 

Abstract. We report on the computer simulation (using molecular dynamics and lattice relaxation) 
to explore tracer and chemical diffusion (carbon) kinetics in austenite at low carbon contents. It was 
found by molecular dynamics simulations that the detailed balance relations are not valid for the 
second nearest neighbours in the movements of the carbon interstitial atoms. The effect of a 
possible split energy level at the second nearest neighbour positions is analysed from a theoretical 
point of view.  
 

Introduction 

       Diffusion of iron and carbon in ferrite, austenite and cementite has recently become of interest 
in order to understand the mechanistic details of metal dusting and also to understand the growth 
mechanisms of carbon nanotubes by way of metal nanoparticle templates. In this paper, we address 
carbon diffusion in austenite (the f.c.c. phase). We report on the computer simulation (using 
molecular dynamics and lattice relaxation) to explore carbon tracer and chemical diffusion kinetics 
in austenite at low carbon contents. 
The model  

       We consider an f.c.c. crystal with a very small concentration of interstitial C atoms. We assume 
that the concentration of interstitials is low enough that the probability to find three and more 
neighbouring interstitial atoms can be neglected. Let w0 be the frequency with which an interstitial 
atom moves from one octahedral site to another without interacting with the second interstitial 
atom. Next, we introduce the frequencies with which any atom from every two interacting 
interstitial atoms can move: wi1, i = 1,2,3,4 are the frequencies with which an atom in a first nn pair 
moves with the final result being either reorientation of the first nearest neighbour nn pair  
formation of a i-th nn pair; wi2, i = 1,3,5 are the dissociative frequencies of the second nn pair with 
the formation of a i-th nn pair; similarly w13 and w23, w14, w25 are the dissociative frequencies of a 
third, fourth and fifth nn pairs (according to the second digit in the subscript) with the formation of 
a first, second nn pairs (according to the first digit in the subscript). All other interstitial jumps in 
this model are assumed to have the same frequency w0 as the jumps of isolated (free) interstitial 
atoms. The interaction of the interstitial atoms in the third and fourth nn pairs, in contrast to the 
second nn pairs, through the solvent atoms are quite weak, therefore we will assume that:  
 
 w31 = w41 and w13 = w14                                          (1) 
 

We also assume that the creation of the third, fourth and higher nn pairs occur at random.  
       In [1] results of an extensive molecular dynamics studies were presented using Fe-Fe and Fe-C 
potentials. At the nn position the very weak C-C potential is represented only by self-blocking 
between C atoms, this affects only w21, w11 and w31. Then, by making use of the experimental data 
for the tracer diffusion coefficient, chemical diffusion coefficient and thermodynamic factors and 
calculating (using Monte Carlo) the tracer correlation factor (most probably there is no collective 
correlation effect in the chemical diffusion coefficient for this model, in [2] this statement was 
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proved for the usual interstitial model) we were able to make the necessary adjustments for these 
three exchange frequencies. 
       For T = 1273K the set of the calculated exchange frequencies are (expressed in term of w0) [1]:  
 

    w11 ≈ 0.60w0, w21 ≈ 0.36w0, w31 ≈ 0.98w0, w12 ≈ 0.44w0, w32 ≈ 1.68w0,  
 w52 ≈ 1.03w0; w13 ≈ w0; w23 ≈ w0; w25 ≈ w0.                                          (2) 
 
In order to apply exact kinetic theory for the calculation of the tracer correlation factor that is outlined 
in a series of studies [3-5], we need to check first if these exchange frequencies satisfy the detailed 
balance relations. First, we let c1, c2, c3, c4 and fc be the concentrations of the first, second, third, 

fourth nn pairs and the concentration of single atoms respectively at thermal equilibrium and 
2
f11 6 cc δ= , 2

f22 3 cc δ= , 2
3 12 fcc = , 2

4 6 fcc = , where δ1 and δ2 are deviation of the concentrations c1, 

c2 from the case of random creation (obviously δi > 1 corresponds to attraction,  δi < 1 corresponds 
to repulsion between the carbon atoms at i-th nn configuration). The detailed balance relations then 
state that: 
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Substituting data of Eq. 1 into Eqs 3 we can see that there is a problem with δ2. There is a 
significant discrepancy between three values: 595.0/ 3223 =ww , 971.0/ 5225 =ww  and 

.367.0/ 11221 =δww  This means that the detailed balance relations are no longer satisfied and 
consequently application of any standard diffusion kinetics theory becomes impossible. Moreover, 
as was pointed out in [4], application of usual Monte Carlo simulations is no longer valid in such a 
situation. 
       To overcome this problem, we will undertake more numerical analysis by molecular dynamics 
simulations to find the reason for the break of detailed balance at the second nn configurations. 
There could however be several possible reasons for this effect. The most probable candidate to 
explain it would be the effect of the energy level at the second nn configuration being effectively 
split into three local minima (see Figure 1 for the case of ‘double’ local minima: for jumps from the 
second to the first nn configuration and reverse and for jumps from the second to the third nn 
configuration and reverse). This effect is obviously a very subtle one and will require careful 
analysis of the already obtained numerical simulations data and possibly construction of the very 
detailed energy landscapes for the second nn configuration. The other possibility could be that the 
energy paths from the second nn positions are different from the corresponding paths to the second 
nn positions. In principle, this scenario would be extremely difficult to cope with. But the high 
probability that the deviation from the detailed balance relations happens only at the second nn 
configuration would be of great help and we would be able to reduce this scenario to the split 
energy level scenario. 
Possible solution: split energy level description     The split energy level effect at an atomic site 
can be introduced in the following way. The split energy effect must be accompanied by ‘splitting’ 
of the second nn sites in space. This means that instead of just one position 2 we have 3 different 
positions (21, 23 and 25) located somewhere in the vicinity of the usual atomic site. Then we should 
assume the following conditions of an atomic jump from these three possible locations: if the atom 
resides in location 21 it can only jump into the first nearest neighbour sites, if the atom resides in 
location 23 it can only jump into the third nearest neighbour sites, if the atom resides in location 25 
it can only jump into the fifth nearest neighbour sites (see Figure 2).  
     Now we can introduce probabilities of finding carbon atoms at the positions 21, 23 and 25: 
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                                          (a) 

 

                                  (b) 

 

Figure 1. (a) – Conventional description of the energy level between neighbouring sites; (b) – 
modification required for the case of carbon interstitial diffusion: at the second nn configuration the 
split energy level occurs. 
 
 

                                      
Figure 2. Schematic presentation of the split energy level at the second nn configuration. 
 
And then it is easy to see that: 
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where δ2

1, δ2
3 and δ2

5 are the deviations of the concentrations from the corresponding 
concentrations occurring at random. The total concentration of the first four nn interstitial pairs is: 
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where we have used the relation: 3/)( 5

2
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2

1
22 cccc ++=  and accordingly 3/)( 5

2
3
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1
22 δδδδ ++= . The 

factor 1/3 here reflects the condition that each of the positions 21, 23 and 25 ‘responsible’ for 4 co-
ordinations out of the total 12 (Figure 2). 
      The total concentration of the interstitial atoms is: 
 

( )ffpf 5412 ccccc δ+=+= .                                                   (7) 

 
The average number of jumps Γ made by an interstitial atom per unit time at thermal equilibrium 
can then be found by simply averaging over all possible types of jumps: 
 

( ) 0544332211 24242222 Γ−+Γ+Γ+Γ+Γ+Γ=Γ 2
ff

2
f cccccccc ,                           (8) 

Where 

00 12w=Γ ,     3121111 524 www ++=Γ ,     ( ) 2
5
252

3
232

1
2122 /4 δδδδ www ++=Γ , 

023133 92 www ++=Γ ,    0134 11ww +=Γ ,     0255 11ww +=Γ                           (9) 
 

are respectively the average number of jumps made by the free interstitial atoms, and by atoms at 
the first, second, third, fourth and fifth nn interstitial pairs per unit time. To first order in the total 
interstitial concentration (see Eq. 7) we will then have that: 
 

( )cΓ+Γ=Γ ε10 ,                                                            (10) 
where  
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For the chemical diffusion coefficient of interstitial atoms we can write to first order in the total 
interstitial concentration: 
 

( ) 3/13/
~

~0
22 cbbD

D
ε+Γ=αΓ= ,                                                (12) 

 
where √2b is the nn separation, αεεε += ΓD

~ , Γε  is the contribution from the average number of 

jumps Γ made by an interstitial atom per unit time, αε  is the contribution from the thermodynamic 

factor α  ( cαεα += 1 ) into 
D
~ε . 

       In [1] it was shown that 
D
~ε  should be given by the following expression: 
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Here, we have taken into account the ‘effective’ split energy level at the second nn configuration. 
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      Similarly, for the tracer diffusion coefficient of the carbon interstitial atoms we can write to first 
order in the total interstitial concentration: 
 

 ( ) 3/)(13/ 0
22* cbfbD fε+ε+Γ=Γ= Γ ,                                                                               (14) 

 
The experimental data at 1273 K are exp

~
D
ε  ≈ 8.44 [1] and for the exp

αε  we accept the upper bound as 
exp(1)
αε  ≈ 7.69 given in [6], and the lower bound exp(2)

αε  ≈ 5.68 [7]. In [1], in order to adjust w11, w21 and 

w31 (and to be able to use experimental tracer diffusion data) we used tracer correlation factors that were 
calculated by Monte Carlo simulation. But for the split energy level at the second nn configuration 
conventional Monte Carlo simulation is not appropriate. A generalization of the kinetic theory for the 
tracer correlation factor is in the process and will be published elsewhere. 
         An approximate averaging procedure of the split energy level can be also used. If we average 
the exchange frequencies according to the required detailed balance then it can be easily shown that 
we still can have a conventional description of the jumps from the second position with effective 
exchange frequencies instead of the measured ones (see Figure 3).  
        Effective exchange frequencies are different from the measured ones by factors coming about 
from the differences between the energy levels on the 21, 23 and 25 locations. 

                                       
Figure 3. Schematic presentation of the result of the averaging procedure of the ‘partial’ 
concentrations of the second nn configuration. 

 
Using Eqs 4,5 we soon have 
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Then the required effective (averaged) exchange frequencies are: 
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We should note first that this approach is somewhat approximate. Secondly, if there is energy 
splitting at the first nn positions as well, then we will not be able to solve the system of detailed 
balance relations. In that case, additional information will be required.  
 
Application to the carbon interstitial diffusion MD calculations at 1273K 

We can apply relations Eqs 16 to have w12
eff = 0.458;  w32

eff = 1.251 = w52
eff.  With these corrections 

we can use Monte Carlo simulation results for the tracer correlation factors (or tracer correlation 
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theory). The final results of the corrected exchange frequencies are similar to those calculated in 
[1]: 
    corr

11w  ≈ 1.01w0, 
corr
21w  ≈ 0.64w0, 

corr
31w  ≈ 1.75w0, w12 ≈ 0.44w0, w32 ≈ 1.68w0, w52 ≈ 1.03w0        (17) 

With these corrected set we have 0.7exp =αε . 

Summary 

We reported on the computer simulation (using molecular dynamics and lattice relaxation) to 
explore tracer and chemical diffusion (carbon) kinetics in austenite at low carbon contents. It was 
found by molecular dynamics simulations that the detailed balance relations were not valid for the 
second nearest neighbours in the movements of the carbon interstitial atoms. The effect of a 
possible split energy level at the second nearest neighbour positions was analysed from a theoretical 
point of view.  
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